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problems still define the solution unknowns at the nodes of
the Gauss–Lobatto quadrature, just as in a single domainWe present a new multidomain spectral collocation method that

uses a staggered grid for the solution of compressible flow prob- method. Examples include [35, 26, 31], and [3] for general
lems. The solution unknowns are defined at the nodes of a Gauss hyperbolic problems and [27] for the Euler gas-dynamics
quadrature rule. The fluxes are evaluated at the nodes of a Gauss– equations. Methods for the compressible Navier–StokesLobatto rule. The method is conservative, free-stream preserving,

equations were presented in [19, 20, 28]. An interestingand exponentially accurate. A significant advantage of the method
method for coupled acoustic and elastic wave interactionsis that subdomain corners are not included in the approximation,

making solutions in complex geometries easier to compute. Q 1996 was proposed in [1].
Academic Press, Inc. The main differences between the Lobatto grid methods

are whether the equations are written in conservative or
non-conservative form, and the manner in which the inter-

1. INTRODUCTION
faces are treated. The conservative form of the equations
was used, for example, in the methods presented byStandard Chebyshev spectral methods applied to com-
[19, 4]. Non-conservative forms were considered inpressible flow problems have some severe restrictions [7].
[35, 27, 1]. We will show below that the use of the conserva-The computational domain must be simple enough to map
tive form of the equations does not guarantee that theonto a square in two space dimensions, or a cube in three.
method is globally conservative, since the interface treat-To increase spatial resolution the polynomial approxima-
ment may lead to loss of conservation.tion order must be increased. For high orders, the deriva-

Two approaches have been used at subdomain interfacestive approximations must be performed with fast Fourier
to ensure that waves propagate properly through them.transform methods to be efficient. If matrix multiplication
The two methods were contrasted in [26] and are consid-is used instead, the work grows too rapidly with the number
ered in more detail in [3]. At least two values of the normalof degrees of freedom to be practical. Finally, the time
derivative are available an interface point, depending onstep restrictions are severe since the time step decreases
the number of subdomains that have that point in common.asymptotically as the square of the order of the approxi-
One interface method integrates a differential compatibil-mating polynomials.
ity equation for the points along the interface [25, 35, 19,The basic premise of a multidomain method is that these
3]. Derivatives are chosen from appropriate subdomainsrestrictions can be reduced by subdividing the computa-
so that wave components are ‘‘upwinded.’’ The other ap-tional domain into multiple zones, called subdomains, on
proach uses a correction procedure [26, 27, 1, 4]. To imple-which the spectral approximation is applied. As a result,
ment the correction method, the interior point approxima-the method can be used on more complex geometries.
tion is integrated everywhere, including at the boundaries.The use of lower order approximating polynomials in each
As a result, multiple solution values are available at eachsubdomain means that matrix multiplication can be both
interface point. A characteristic combination of these solu-efficient and accurate and the time step restrictions need
tions is then made to correct the solution for the propaga-not be as severe. A discussion of the advantages of multido-
tion of waves across the interface.main methods over the single domain method was pre-

Each interface treatment has its advantages and disad-sented in [25] and has been updated in [20].
vantages. Integrating the differential equation means thatLess than a decade after they were first introduced [25],
the solution can be approximated to any order of accuracythe bulk of the spectral multidomain methods that have

been proposed for compressible flows or similar hyperbolic in time, depending on the choice of the time integration
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scheme. Implicit time integration schemes can also be used condition can be computed to the same temporal accuracy
as the interiors. However, in multiple space dimensions[3]. The serious disadvantage is that the tangential space

derivatives must be continuous across subdomain inter- the method does not include (the Gauss rules being open)
the corners of the subdomains. Thus, the coding of thefaces in more than one space dimension. This requirement

severely restricts the types of geometries on which solu- method does not require special cases at corners and any
number of subdomains can meet at a point without diffi-tions can be computed, since it means that the Jacobians

of the transformations of the mappings between the subdo- culty.
The paper is divided as follows. The algorithm is pre-mains and the unit square must be continuous across sub-

domain interfaces. The correction scheme, on the other sented in the next section for problems in one space dimen-
sion, along with definitions of the notation used throughouthand, does not require smoothness of the grids, since only

the solution values are required at the interfaces. However, the paper. We show that the staggered grid method is
conservative, while methods that upwind derivatives arethe temporal accuracy of the correction method is limited

to first order (cf. [7, p. 245].) not. A scalar problem and a linear system will be used as
examples to show that the method is exponentially conver-A disadvantage shared by the two interface treatments

is their complexity. Either method is simple to apply in gent for smooth problems. Although we will be concerned
in this paper primarily with steady problems, an exampleone space dimension. In two space dimensions a choice

must be made at corners to determine from which subdo- is included to show that high order temporal accuracy can
also be obtained. In Section 3, we describe the algorithmmains the solution bicharacteristics must be computed.

Special algorithms can be developed for the approxima- in two space dimensions. We show that the method remains
conservative and is also free-stream preserving. Section 4tions at the corners of subdomains [27], but if more than

four subdomains meet at a single point, the choice can be provides three examples of the use of the method for two-
dimensional problems. The first problem is that of a pointeven more complex.

A very different multidomain approximation is based source flow, for which there is an exact solution. We show
that exponential accuracy is obtained for this problem. Theon the Chebyshev cell-averaged grid originally proposed

by Cai et al. [5]. In this method, ‘‘cell’’ averaged quantities second problem is a subsonic flow over a circular bump in
a channel, and we show that the entropy errors decayare defined on the Gauss–Chebyshev grid, while fluxes are

defined at the more usual Lobatto points [37, 16, 17]. The exponentially fast. Finally, we solve a transonic flow in an
axisymmetric converging–diverging nozzle and comparecell-averaged method avoids many of the disadvantages of

the methods just described. It is fully conservative, and it the results to experimental data. Concluding remarks are
then made in the Section 5.can be approximated to any temporal order of accuracy.

It is also geometrically flexible because it does not require
continuity of the transformations across interfaces. In more 2. THE STAGGERED GRID APPROXIMATION IN ONE
than one space dimension, the method does require special SPACE DIMENSION
attention at the corners of the subdomains. Currently, a
simple average of the multiple solutions is computed and 2.1 Notation
broadcast to all contributing subdomains [17].

The staggered grid approximation uses two grids to com-In this paper, we present a new multidomain spectral
pute the solution values and advective fluxes. Unlike thecollocation method for the solution of compressible flow
common Chebyshev approximation [7], which uses onlyproblems. The new method is based on a staggered grid,
the nodes of the Gauss–Lobatto quadrature as collocationanalogous to fully staggered grids often used with finite
points, the new method uses both the Gauss and thedifference methods. The solutions are defined at the nodes
Gauss–Lobatto points. We denote the points on the twoof a Gauss quadrature rule, and the fluxes are evaluated at
grids by the Lobatto points, Xj , and the Gauss points,the nodes of a Gauss–Lobatto rule. Staggered-grid spectral
Xj11/2 ,approximations were first proposed for the solution of the

incompressible Navier–Stokes equations (cf. [7, p. 234]).
Our grid will be identical to the fully staggered grid of

Xj 5
1
2 S1 2 cos Sjf

NDD , j 5 0, 1, ..., N,
(1)

Bernardi and Maday [2].
The staggered grid multidomain method for compress-

ible flow problems has all the desirable features found in Xj11/2 5
1
2 S1 2 cos S 2j 1 1

2N 1 2
fDD , j 5 0, 1, ..., N 2 1.

the methods discussed above. First, like the cell-averaged
method it is conservative. Thus, it should be possible to
apply shock capturing techniques to the approximation. In (1), we have mapped the usual collocation points defined

on [21, 1] to the more convenient unit interval. The over-Subdomains can be defined independently of their neigh-
bors, so the method is geometrically flexible. The interface bar and half point notations for the Gauss points are used
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only for their value as an analogy to staggered grid finite Similarly, the flux is approximated by the polynomial
F k(X) [ PN , defined by (3a). Substitution of these approxi-difference methods. It must be understood that the Gauss

points do not lie halfway between the Lobatto points [7]. mations into (5) gives
Two polynomial approximations are defined, one for

each grid. Let the space of polynomials of degree less than
U k

t 1
1

xX

­F k(X)
­X

5 Rk(X), k 5 1, 2, ..., K. (6)or equal to N be denoted PN . Let lj(j) [ PN be the Lagrange
interpolating polynomial

To obtain the equations that define the solution unknowns
at the Gauss points, we require that the residual, R, belj(j) 5 p

N

i50
i?j

S j 2 Xi

Xj 2 Xi
D (2a)

zero at the Gauss points of the subdomain. This leads to
the collocation approximation

defined on the Lobatto grid. On the Gauss grid, we define
hj11/2 [ PN21 to be the polynomial

dU k
j11/2

dt
1

1
xX

­F k(X j11/2 )
­X

5 0, j 5 0, 1, ..., N 2 1. (7)

The spatial derivative operation in (7) can be evaluatedhj11/2(j) 5 p
N21

i50
i?j

S j 2 Xi11/2

Xj11/2 2 Xi11/2
D . (2b)

as the multiplication of the vector of flux values by a deriva-
tive matrix, D. From (3a), we see that

Finally, let Qj be a grid point value on the Lobatto grid
and let Qj11/2 be a value defined on the Gauss grid. Then ­F k(X j11/2 )

­X
5 ON

n50
l9n(Xj11/2 )F k

n 5 ON
n50

djnF k
n (8)

we write the polynomials that interpolate these values as

so we writeQ(X) 5 ON
j50

Qj lj(X) (3a)

­F k

­X U
j11/2

5 (DF k)j11/2 5 ON
n50

djnF k
n . (9)Q(X) 5 ON21

j50
Qj11/2hj11/2(X). (3b)

Thus, (7) can be written in vector form as2.2. The One-Dimensional Staggered Grid
Approximation for Scalar Equations

To motivate the staggered grid approximation, we con-
dUk

dt
1

1
xX

DFk 5 0, k 5 1, 2, ..., K, (10)
sider the approximation of scalar problems of the form

where Uk 5 [U k
1/2U k

3/2 ... U k
N21/2 ]T, Fk 5 [F k

0F k
1 ... F k

N]T.
To compute the flux values on the Lobatto grid, we use

ut 1 fx(u) 5 0, ­f/­u . 0, x [ [a, b], t . 0,

u(x, 0) 5 u0(x)

u(a, t) 5 g(t).

(4) the following reconstruction procedure. We first evaluate
the interpolant U k(X) [ PN21 at the Lobatto points by
multiplying the vector of solution values by an interpola-
tion matrix, I:The interval [a, b] is subdivided into multiple, non-overlap-

ping subdomains, Vk 5 [ak , bk ], k 5 1, 2, ..., K, which are
ordered left to right. A simple linear transformation can U(Xj ) 5 ON21

n50
Un11/2hn11/2(Xj) 5 ON21

n50
ij,n11/2Un11/2 . (11)

be made to the unit interval, so that on each subdomain
we solve the problem

The family of characteristics of (5) runs left to right. Thus,
we expect the use of the solution extrapolated to the leftut 1

1
xX

fX(u) 5 0, X [ [0, 1], t . 0. (5)
subdomain boundary to lead to an unstable procedure. To
provide the proper characteristic domain of dependence,
we use the boundary condition to define the j 5 0 valueOn each subdomain is placed the staggered grid defined

by (1). For convenience, we will assume that the same on the furthest left subdomain. At subdomain interfaces,
where two values U k21(1), U k(0) are available, we choosenumber of points is used in each subdomain, but this is

not required by the method. We then let U k(X) [ PN21 , the value computed from the left side of the interface. The
result is an upwind evaluated approximation at both thedefined by (3b), approximate the exact solution, u on Vk.



STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD 247

TABLE Ileft boundary and the interfaces. The fluxes, Fj , are then
computed from the solution values on the Lobatto grid. Time Step Coefficient, Dt 5 C/N 2

The method imposes the boundary conditions, weakly,
Method Coefficientthrough the definition of the flux, since the discrete solution

values are not used directly at the boundary or interfaces.
Standard Lobatto 35

To see this, consider the single domain approximation of Staggered 36
(4) for f 5 u. Then we can write the flux F(X) 5 U(X) [
PN in terms of the interpolant U (X) and the boundary
condition as

of Carpenter and Kennedy [8]. We note that it should also
U(X) 5 U(X) 1 [g 2 U(a)]l0(X), (12)

be advantageous to use the new Runge–Kutta methods
derived by Hu et al. [22], which are optimized to minimize

so that the polynomial U(X) satisfies the phase and dissipation error introduced by the temporal
approximation.

The time step restriction for the staggered grid approxi-
U(Xj ) 5HU(Xj ), j 5 1, 2, ..., N,

g, j 5 0.
(13) mation is comparable to the restriction required by the

standard Lobatto approximation for the model equation
ut 1 ux 5 0, 21 # x # 1. As expected, the time step

Then (7) can be written as goes as Dt Y 1/N 2. In Table I we show the coefficients
of proportionality using the Carpenter–Kennedy fourth-
order Runge–Kutta formula.dU j11/2

dt
1

1
xX

U 9(Xj11/2 ) 5
1

xX
[U(X0 ) 2 g]l90(Xj11/2 ),

To summarize the staggered grid procedure, we present
the following algorithm for the scalar problem describedj 5 0, 1, ..., N 2 1. (14)
above.

Thus, the boundary condition is imposed indirectly at each ALGORITHM I (Staggered grid, scalar, 1D).
collocation point through the penalty term on the right.

1. Interpolate U 5 [U 1/2, U 3/2, ..., U N-1/2]
T

Equation (10) is a system of ordinary differential equa-
to the Lobatto points:tions that must be integrated in time to get the approximate

solution values at the Gauss points. In principle, any com- Compute the matrix-vector product Uk 5 IkUk de-
mon integration procedure can be used. We have chosen fined by (11) for each subdomain
to use low storage Runge–Kutta methods that require only 2. Compute the flux values at internal
2-N storage locations. For some of the computation of points on Lobatto Grid:
steady-state problems, for which the time discretization is

F k
j 5 f(Uk

j ), j 5 1, 2, ..., N, k 5 1, 2, ..., Konly an iterative procedure, we have used a mid-point rule,

3. Apply boundary and interface condi-
tions:U k,n11/2

j11/2 5 U k,n
j11/2 2

Dt
2

1
xX

­F k,n

­X U
j11/2

, j 5 0, 1, ..., N 2 1,

F1
0 5 f(g)

U k,n11
j11/2 5 U k,n

j11/2 2 Dt
1

xX

­F k,n11/2

­X U
j11/2

, j 5 0, 1, ..., N 2 1. F k
0 5 f(Uk21

N ), k 5 2, 3, ..., K

(15) 4. Differentiate Flux and evaluate on
Gauss grid by subdomain:

This method appears to have a good balance between Compute the matrix-vector product DkFk, k 5
the time step that can be used and temporal damping 1, 2, ..., N by Eq. (9).
introduced by the scheme. With additional knowledge of

5. Update the solution by subdomain:the eigenvalue structure of the differentiation matrices,
other choices might include schemes optimized for rapid Integrate (10) by the chosen ODE solver, repeating
convergence to steady state, such as those discussed in [11, Steps 1–4, as necessary.
10, 9]. 6. Repeat 1–5 until done.

More generally, we have used low-storage methods from
the first through fourth orders. For time dependent prob- We note that the method requires two matrix–vector

products per Runge–Kutta stage. This is twice the worklems, we have used the third-order 2-N storage method of
Williamson [41], and the more recent fourth-order scheme of a Lobatto grid method, or of the cell-averaged method.
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Thus, there is no speed advantage for the method in one We then multiply each equation by its associated Clen-
shaw–Curtis weight [7] and sum to getspace dimension.

A desirable feature of the staggered grid approximation,
(7), is that it is conservative. To show conservation, we ON

j50

dUL
j

dt
wL

j 1 ON
j50

dUR
j

dt
wR

jdefine the quadrature

5 wL
0 SF 9L

0 1
dg
dtD2 ON

j50
wL

j F 9L
j 2 ON

j50
wR

j F 9R
jE1

0
F(X) dX 5 ON21

j50
Fj11/2wj11/2 ;F [ PN21

(16)
2 wR

0 [F 9L
N 2 F 9R

0 ] (21)wj11/2 5 E1

0
hj11/2(X) dX.

5 F L(0) 2 F R(1) 2 wR
0 [F 9L

N 2 F 9R
0 ]

For each j, we multiply (7) by xXwj11/2 . The sum over all
points and all subdomains is 1 wL

0 SF 9L
0 1

dg
dtD .

Equations (21) shows that there is a contribution at theOK
k51

ON21

j50
wj11/2 Sxk

X
dU j11/2

dt
1 F 9k

j11/2D5 0. (17)
interface proportional to the jump in the derivative across
the interface. For smooth enough functions, this is not
expected to be a problem, since the difference betweenNow, U k(X), F 9k(X) [ PN21 , and xX is a polynomial of
the derivatives should go to zero exponentially fast, whiledegree zero, so we can replace the sum over j by integrals
the coefficient decays as O(1/N 2).to get

As an example of solutions computed using Algorithm
I, we compute a steady solution of the equation ut 1
ux 5 f, x [ [0, 2], t . 0. Scalar examples of one-dimensionalOK

k51
E

Vk Sxk
X

dU (X)
dt

1 F k
X(X)D dX 5 0. (18)

time dependent problems can be found in [29]. Compari-
sons to a variety of finite difference methods can be found
in [39]. The initial and boundary conditions were chosenUpon integrating the flux derivatives, the interface contri-
so that the exact steady solution is u(x) 5 tanh((x 2 1.5)/butions cancel, and
2). Figure 1 shows the solution computed using three sub-
domains and eight points per subdomain.

Convergence of the error is exponential for this problem.d
dt HOKk51

E
Vk U k(X)xk

X dXJ5 F1(0) 2 F K(1). (19)
Figure 2 shows the error plotted as a function of the Gauss
polynomial order for the subdivision shown in Fig. 1. For
comparison, we have also plotted the error of the singleIn contrast, a multidomain method defined on the Lo-
grid multidomain method (20). We see that the staggeredbatto points, where the upwind value of the flux derivative
grid approximation is at least as accurate as the non-stag-is used at the interface (e.g., [19]) is not truly conservative.
gered grid approximation, and sometimes it is more accu-To show this, it is sufficient to consider two subdomains,

VL and VR for which xX 5 1. Using the upwind derivatives
at the interface, one integrates the following system of
equations:

UL
0 5 g

dUL
j

dt
5 2F 9L

j , j 5 1, 2, ..., N 2 1,

dUR
j

dt
5 2F 9R

j , j 5 1, 2, ..., N 2 1, (20)

dUL
N

dt
5

dUR
0

dt
5 2F 9L

N

dUR
N

dt
5 2F 9R

N .
FIG. 1. Steady solution of a scalar wave equation.
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moving left to right, and the second represents waves mov-
ing right to left. An upwind approximation chooses Qk21

N

for the right going components, and Qk
0 for the left going

components to give

F k21
N 5 F k

0 5 F (Qk21
N , Qk

0) ; ZL1Z21Qk21
N 1 ZL2Z21Qk

0 .

(24)

Characteristic decompositions for nonlinear flux vectors
have been addressed extensively in the finite difference
community (Ref. [21]). We have considered flux vector
splitting and flux difference splitting.

The resolution of the jump at the subdomain interfaces
can be easily viewed using flux vector splitting. The flux

FIG. 2. Convergence of the error for the staggered grid multidomain is decomposed into a right going and a left going flux,
method compared to a non-staggered multidomain approximation. F(Q) 5 F1(Q) 1 F2(Q). The splitting is done so that the

Jacobian matrix of F1 has only positive eigenvalues and
the Jacobian of F2 has only negative eigenvalues. Examples
are the Van Leer [40] splitting and the more recent splittingrate by a factor of four. This increase in accuracy is consis-
of Liou and Steffen [32]. Using flux vector splitting,tent with the observations of [15]. As argued in [15],
the positive flux is evaluted using the solution from theenforcing the boundary condition weakly through a penalty
left, the negative flux is computed using the value fromterm (see Eq. (14)) is typically more accurate than enforc-
the right:ing it exactly.

2.3. The One-Dimensional Staggered Grid F k21
N 5 F k

0 5 F (Qk21
N , Qk

0) ; F1(Qk21
N ) 1 F2(Qk

0). (25)
Approximation for Systems

Algorithm I can be easily extended to systems of hyper- Van Leer’s flux vector splitting was used in [19] to compute
bolic equations of the form the flux derivatives at interfaces for the advective part of

the Navier–Stokes equations.
As an interface treatment, flux vector splitting has theQt 1 Fx(Q) 5 0, x [ [a, b], t . 0,

Q(x, 0) 5 Q0(x),
(22) desirable feature that the positive and negative fluxes can

be computed within a subdomain without regard to the
neighbors. The final flux computation, (25), requires onlywhere Q and F are m-vectors. We assume that the system
a simple sum of the boundary fluxes. However, we foundis hyperbolic, that is, the Jacobian matrix A 5 ­F/­Q 5
that the Van Leer splitting applied to the staggered gridZLZ21, where L is a real diagonal matrix. We further
scheme was unstable for some long time integrations.assume, as is the case for the Euler gas-dynamics equations,

As an alternative method to compute the interface flux,that the flux can be written as F 5 AQ. To complete (22),
we have chosen to use an approximate Riemann solver.we assume that appropriate dissipative boundary condi-
This approach was also taken by Giannakouros and Karni-tions are applied.
adakis [16]. Several solver choices are possible, but weThe approximation of the system follows that of the
have used Roe’s [36] solver with the entropy fix. Formally,scalar equation, except for the treatment of boundary and
given the two states Qk21

N and Qk
0 , we writeinterface conditions. At an interface between subdomains

k 2 1 and k, there are two vector values of the interpolated
solution available, Qk21

N and Qk
0 . The computed flux must F (Qk21

N , Qk
0) 5 !s(F(Qk21

N ) 1 F(Qk
0))

(26)use these two values to allow waves to propagate through
2 !s RuLuR21(Qk

0 2 Qk21
N ),the interfaces. For constant coefficient linear problems, we

can write
where R is the matrix of the right eigenvectors of the

F 5 AQ 5 ZLZ21Q 5 ZL1Z21Q 1 ZL2Z21Q, (23) Jacobian of F, computed using the Roe-average of Qk21
N

and Qk
0 . Equation (26) is modified to correct the entropy

across sonic points [21].where L6 5 L 6 uLu. The first term represents waves
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Boundaries can be considered as interfaces between the
computed solution and the solution assumed to exist out-
side the computational region, if fully known. Thus, we
can compute the boundary flux by

F 1
0 5 F (Q(a, t), Q1

0) (27a)

on the left, and

F K
N 5 F (QK

N , Q(b, t)) (27b)

on the right, where Q(a, t) and Q(b, t) represent the exte-
rior solution at the boundaries. Other ways to compute

FIG. 3. Solution of the system (27) at t 5 0.75 using four subdomains.the boundary flux when the full exterior solution is not
known will be described in regard to specific problems in

Further examples that model unsteady acoustic propaga-Section 4.
tion, including acoustic propagation in a quasi-one-dimen-In summary, for systems of equations, we have the fol-
sional nozzle, can be found in [29]. The initial conditionlowing algorithm.
for (28) was chosen to be a Gaussian pulse with the peak

ALGORITHM II (Staggered grid, system, 1D). at x 5 1,

1. Interpolate the Gauss-point solution
values to the Lobatto points: Q(x, 0) 5Fe212(x21)2

0
G . (29)

Compute the matrix–vector product Qk 5 IkQk by
Eq. (11) for each subdomain

We specify boundary conditions so that the waves pass
2. Compute the interior point fluxes: through the boundaries without reflection,

Fk
j 5 F(Qk

j ), j 5 1, 2, ..., N, k 5 1, 2, ..., K
u(21, t) 2 v(21, t) 5 e212(t22)2

(30)3. Apply the interface conditions:
u(4, t) 1 v(4, t) 5 e212(323t)2

.
Fk21

N 5 Fk
0 5 F (Qk21

N , Qk
0), k 5 1, 2, ..., K

The solution was computed using four subdomains of
4. Apply boundary conditions at left and equal length and with the same number of points within

right each subdomain. For the time discretization, we have used
both the Williamson [41] third-order and the Carpenter5. Compute spatial derivatives at Gauss
and Kennedy [8] fourth-order schemes. Figure 3 shows thepoints:
solution at time t 5 0.75. For a small enough time step,Compute the matrix–vector product by Eq. (9).
spectral decay of the error is observed, as shown in Fig. 4.

6. Update the solution at the Gauss
points

dQk
j11/2

dt
1

1
xX

F9k
j11/2 5 0, j 5 0, 1, ... N 2 1,

k 5 1, 2, ..., K,

repeating Steps 1–4 for each Runge–Kutta stage.

7. Repeat Steps 1–6 until done.

As an example of the application of Algorithm II, we
solve the problem

Qt 1 Fx 5 0, x [ [21, 4], t . 0

(28)
Q 5 Fu

v
G, F 5 F1 2

2 1
GQ.

FIG. 4. Decay of the spatial error of the system (28).
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FIG. 6. Diagram of a subdomain decomposition in 2D.

We assume c 5 1.4 and that re 5 p/(c 2 1) 1 r(u2 1
FIG. 5. Decay of the temporal error of the system (28). v2)/2. For axisymmetric problems, such as the transonic

flow in the converging–diverging nozzle discussed later,
we interpret x as the axial coordinate and y as the radial

To study the temporal accuracy, we computed the solu- coordinate. We then add to the right-hand side of (31a)
tion on the finest grid, N 5 25, so that the spatial accuracy the vector
was close to rounding error. A plot of the errors as a
function of Dt for the third- and fourth-order methods is
shown in Fig. 5. A least squares fit to the errors indicates
a slope of 2.995 for the third order and 3.998 for the fourth-

H 5
1
y 3

rv

ruv

rv2

v( re 1 p)
4 . (32)order method, so the expected high order temporal accu-

racy is obtained. We also see that over the Dt range shown,
the fourth-order method is about two orders of magnitude
more accurate than the third. This is consistent with the
observations of [8]. 3.1. Mapping in Two Space Dimensions

The conclusion that the temporal accuracy is determined
In two space dimensions, we subdivide a computationalby the time differencing approximation carries over to the

domain, V, into quadrilateral subdomains, Vk, k 5 1, 2, ...,non-linear case. As an example, we considered the solution
K. Figure 6 shows an example of a division of a regionof ut 1 1/2(u2)x 5 0 with the initial condition u(x, 0) 5
into four subdomains. We make three assumptions abouttanh(10x). In this case, a least squares fit to the logarithm
the subdivision in this paper. First, we allow subdomainsof the error as a function of the logarithm of the time step
to intersect only at a point or along an entire side. Second,gives a slope of 4.014.
we assume that the approximation is conforming, so that
grid lines coincide across subdomain interfaces. Finally,3. THE TWO-DIMENSIONAL APPROXIMATION
we assume that the subdomain boundaries do not move
in time. In the discussion that follows, we will make theWe now describe the approximation of the Euler equa-
assumption that the same polynomial order is used in eachtions of gas-dynamics in conservative form,
space direction and for each subdomain. In practice, the
number of grid points can vary, as long as the approxima-­Q

­t
1

­F
­x

1
­G
­y

5 0, (31a) tion remains conforming at subdomain interfaces.
Subdomains are mapped onto the unit square by an

isoparametric mapping. Let the vector function g(s), 0 #where Q is the vector of solution unknowns and F(Q) and
s # 1, define a parametric curve. Define also the polynomialG(Q) are the advective flux vectors
of degree N that interpolates g at the Gauss–Lobatto points
to be

Q 5 3
r

ru

rv

re
4 , F 5 3

ru

p 1 ru2

ruv

u( re 1 p)
4 , G 5 3

rv

ruv

p 1 rv2

v( re 1 p)
4 . G(s) 5 ON

j50
g(sj)lj(s). (33)

Four such polynomial curves, Gm(s), m 5 1, 2, 3, 4, counted
counterclockwise, bound each subdomain. We map each(31b)
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Points of type ‘‘a’’ in Fig. 7 represent the Gauss/Gauss
points (Xi11/2 , Yj11/2), i, j 5 0, 1, ..., N 2 1. The grid that
results from these points is the tensor product of the
one-dimensional Gauss grid defined in (1). We approx-
imate the solution and the transformation Jacobian at the
Gauss/Gauss points and denote them by Qi11/2, j11/2 and
Ji11/2, j11/2 5 J(Xi11/2, j11/2 , Yi11/2, j11/2). From these,
we compute the Gauss point values Q̃i11/2, j11/2 5
Ji11/2, j11/2Qi11/2, j11/2 . Finally, the interpolant of the solution
through the Gauss points is a polynomial in PN21,N21 5
PN21 ^ PN21 :

FIG. 7. Diagram of the fully staggered grid in two space dimensions.

Q̃(X, Y) 5 ON21

i50
ON21

j50
Q̃i11/2, j11/2hi11/2(X)hj11/2(Y). (37)

subdomain onto the unit square by the linear blending
formula

The points of type ‘‘b’’ in Fig. 7 form the Lobatto/Gauss
grid (Xi , Yj11/2), i, j 5 0, 1, ..., N. On this grid are evaluatedxN(X, Y) 5 (1 2 Y)G1(X) 1 YG3(X) 1 (1 2 X)G4(Y)
the horizontal flux vector, F̃ and the metric terms yY and

1 XG2(Y) 2 x1(1 2 X)(1 2 Y) 2 x2X(1 2 Y) xY . The metric terms are computed as ­yN(Xi , Yj11/2)/­Y
and ­xN(Xi , Yj11/2)/­Y. At points interior to a subdomain,

2 x3XY 2 x4(1 2 X)Y, (34)
the horizontal flux is computed by

where the xj’s represent the locations of the corners of the
subdomain, counted counterclockwise. F̃i, j11/2 5 yN

Y(Xi , Yj11/2)F(Q(Xi , Yj11/2))
(38)Under the mapping Vk } [0, 1] 3 [0, 1] given by (34),

2xN
Y(Xi , Yj11/2)G(Q(Xi , Yj11/2)),the Euler equations (31) become

where Q is a polynomial of the type (37) that passes­Q
­t

1
1
J F­F̃

­X
1

­G̃
­YG5 0, (35a)

through the values Q̃i11/2, j11/2/Ji11/2, j11/2 . The computation
of the flux at boundary and interface points is described
in the next subsection.where

The vertical flux and the derivatives yX and xX are com-
puted on the Gauss/Lobatto grid, marked by ‘‘c’’ on Fig.F̃ 5 yN

YF 2 xN
YG, G̃ 5 2yN

XF 1 xN
XG

(35b) 7. The points on this grid are (Xi11/2 , Yj), i, j 5 0, 1, ...,
J(X, Y) 5 xN

X yN
Y 2 xN

Y yN
X . N 2 1. The metric terms are computed as ­yN(Xi11/2 , Yj)/

­X and ­xN(Xi11/2 , Yj)/­X. The vertical flux is computed
at interior points bySince we assume here that the subdomain boundaries do

not move in time, we can write (35a) as

G̃i11/2, j 5 2yN
X(Xi11/2 , Yj)F(Q(Xi11/2 , Yj))

(39)­Q̃
­t

1
­F̃(Q)

­X
1

­G̃(Q)
­Y

5 0, (36) 1 xN
X(Xi11/2 , Yj)G(Q(Xi11/2 , Yj))

where Q̃ 5 JQ and the fluxes are still defined by (35b). and at boundary points as described in Section 3.3.
It may appear that to define quantities on three different

3.2 The Staggered Grid
grids would lead to a significantly more complicated
method than a single grid Lobatto approximation. ThisA fully staggered grid is used in two space dimensions.

A schematic of the grid on a single subdomain is shown turns out not to be the case. The definitions of the fluxes
on the staggered grid by (38) and (39) mean that the recon-in Fig. 7. The grid is the same as the staggered grid pro-

posed by Bernardi and Maday [2] for the solution of the struction procedure, i.e., the interpolation of the solution
needed to compute the fluxes at the Lobatto points, is not aincompressible Navier–Stokes equations. In what follows,

we will ignore superscripts that denote which subdomain two-dimensional operation. Rather, it is the less expensive
sequence of one-dimensional interpolations, given by (11).is being considered, unless necessary.
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and 2 and between subdomains 3 and 4, only the horizontal
fluxes need to be computed. Along horizontal interfaces,
like those between subdomains 1 and 3, only the vertical
flux needs to be computed. Because the grid is fully stag-
gered, the coupling is through subdomain faces only, not
through the corners.

Figure 8 indicates a significant advantage of the fully
staggered grid over an unstaggered grid. In the unstaggered
approximation, for example, as described in [27], special
corner algorithms must be devised to ensure correct propa-
gation of waves through the corners. Each special case
must be coded separately. Also, the choice of bicharacteris-
tics that determines the domains of dependence becomes
more complex as the number of subdomains/boundaries
that come together at a point increases, making the deriva-
tion of these special cases more difficult. The staggeredFIG. 8. Diagram of four subdomains showing locations near interfaces

where solutions and fluxes are computed. Symbols: d solution; j, F; h, G. approximation does not include subdomain corners, so
conditions do not have to be specified at corner points.
Any number of subdomains can come together at a point
without the need for special point approximations. NoThe values of the solution vector required to compute the
special code is required even for very complex subdo-flux vectors are actually
main topologies.

The interpolation of the solution by (40) produces two
Q(Xi , Yj11/2) 5 ON21

i50
ON21

j50
Qi11/2, j11/2hi11/2(Xi)hj11/2(Yj11/2) solution values at an interface point, one from each of the

two contributing subdomains. As in the one-dimensional
case, we do not expect these two values to coincide, except

5 ON21

i50
Qi11/2, j11/2hi11/2(Xi) (40a)

in the limit of infinite resolution. A single flux is calculated,
as described for the one-dimensional problem, except that
we only consider waves propagating normal to the inter-and
face. This normal wave approximation is common for finite
difference approximations [21] and has been used in [19,

Q(Xi11/2 , Yj) 5 ON21

i50
ON21

j50
Qi11/2, j11/2hi11/2(Xi11/2)hj11/2(Yj) 17, 4] for spectral approximations. We note, however, that

other two-dimensional wave decompositions are possible,
like those surveyed in [34].

5 ON21

j50
Qi11/2, j11/2hj11/2(Yj) (40b)

Physical boundaries can be viewed as interfaces between
the external flow and the computational region. Wall
boundaries can be computed by imposing an opposingsince, by construction,
flow that enforces zero normal momentum flux across the
interface. Subsonic inflow and outflow boundaries can behm11/2(Yj11/2) 5 dm, j
computed by replacing the solution that would have come

hn11/2(Xi11/2) 5 dn,i from a neighboring subdomain by the free-stream values,
if they are known. If the full state of the exterior flow is

3.3. Interface and Boundary Treatment
not known, the known quantities can be specified and the
remaining quantities can be computed by a characteristicTo describe how we compute the interface and boundary

conditions using the staggered grid approximation, we will method. Once all solution quantities are known on the
boundary, the flux can be computed. An example of thisrefer to Fig. 8, which schematically represents four subdo-

mains and the locations at which solution and flux values approach is provided in Section 4.3. Supersonic outflow
boundaries require no extra conditions.are computed. Only the collocation points near the bound-

aries are marked. The circles represent the solution values,
which are located on the Gauss/Gauss grid. The locations

3.4. Discretization of the Equations
of the horizontal flux values, F̃i, j11/2 , are represented by
solid squares. The locations of the vertical flux values, Once the fluxes are computed, the spatial discretization

can be made. From the discrete flux values are definedG̃i11/2,j , are marked by hollow squares. From the diagram,
we see that along the interfaces between subdomains 1 the polynomials
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F̃(X, Y) 5 ON
i50

ON21

j50
F̃i, j11/2li(X)hj11/2(Y)

(41)
E1

0
E1

0
PdXdY 5 ON21

i50
ON21

j50
Pi11/2, j11/2wi11/2hj11/2

;P [ PN21,N21 .

(44)

G̃(X, Y ) 5 ON21

i50
ON
j50

G̃i11/2, jhi11/2(X)lj(Y).

By exactness of the quadrature, the sum of Eq. (43) times
wi11/2hj11/2 over all the points within a subdomain is

Derivatives of the interpolating polynomials are then eval-
uated at the Gauss/Gauss grid points. Like the reconstruc-
tion procedure, the differentiation of (41) can also be done E1

0
E1

0

dQ̃
dt

dXdY 5 ON21

i, j50

dQ̃
dt U

i11/2, j11/2

wi11/2hj11/2

as a sequence of one-dimensional operations:

5 ON21

i, j50
F­F̃

­X
1

­G̃
­YGi11/2, j11/2

wi11/2hj11/2­F̃
­XU

i11/2, j11/2

5 ON
n50

F̃n, j11/2l9n(Xi11/2)

(42)
5 E1

0
E1

0
F­F̃

­X
1

­G̃
­YG dXdY. (45)

­G̃
­YU

i11/2, j11/2

5 ON
m50

G̃i11/2,ml9m(Yj11/2).

Thus, for each subdomain,

Because both interpolation and differentiation opera- d
dt

E1

0
E1

0
Q̃dXdY 5 2E1

0
F̃(1, Y)dY 1 E1

0
F̃(0, Y)dY

(46)
tions must be performed at each step, the total work of
the staggered grid method is twice that of a method that
only uses the Lobatto grid. The new method requires the 2E1

0
G̃(X, 1)dX 1 E1

0
G̃(X, 0)dX.

same amount of work, however, as the cell-averaged
method [17]. The reconstruction procedure in two space

When (46) is summed over all subdomains, the interior
dimensions for the cell-averaged method is more complex

integrals cancel so that only the boundary contributions
than in one and requires the same amount of work as both

remain:
the interpolation and differentiation operations here.

Finally, from the definitions (37)–(42), the semi-discrete
approximation for the solution unknowns can be written

d
dt O

4

k51
E1

0
E1

0
Q̃kdXdY 5 E1

0
(F̃1(0, Y) 1 F̃3(0, Y))dY

as

2 E1

0
(F̃2(1, Y) 1 F̃4(1, Y))dY

dQ̃
dt U

i11/2, j11/2

1 F­F̃
­X

1
­G̃
­YGi11/2, j11/2

5 0,
1 E1

0
(G̃3(X, 0) 1 G̃4(X, 0))dX

2 E1

0
(G̃1(X, 1) 1 G̃2(X, 1))dX.Hi 5 0, 1, ..., N 2 1,

j 5 0, 1, ..., N 2 1.

(43)

(47)

Equation 43 can be integrated in time as described in The staggered grid approximation is also free-stream
Section 2.2. preserving, which means that the isoparametric spatial

mappings do not introduce false source terms. It is suffi-
3.5. Properties of the Staggered Grid Approximation cient to consider the approximation within one subdomain,

since all derivatives are computed locally by subdomain.The staggered grid approximation is both conservative
If we take F(Q) 5 G(Q) 5 1, then the approximationand free-stream preserving. A net gain or loss of Q̃ is
(43) becomesdetermined only by the flux through the exterior bound-

aries. If the solution is constant in space, then the solution
must remain constant in time, even in the presence of a dQ̃

dt U
i11/2, j11/2spatially varying mapping.

We first show that the staggered grid approximation is
1 1 F ­

­X
( yN

Y 2 xN
Y) 1

­

­Y
(2yN

X 1 xN
X)G

i11/2, j11/2
5 0.conservative. It is sufficient to consider the four subdo-

mains shown in Fig. 8. Let the quadrature weights wi11/2 ,
hj11/2 be defined so that (48)
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Since xN [ PN,N ,

­

­X S­xN

­YDi11/2, j11/2
5 ON

k,l50
x N

k,ll9k(Xi11/2)l9l (Yj11/2)

(49)

5
­

­Y S­xN

­XDi11/2, j11/2 FIG. 9. Three subdomain decompositions for the diverging duct
problem.

so that,

tions, each having four subdomains. Figure 9 shows the
three decompositions. In the first (Grid I), the subdomain
boundaries are straight lines so that the mappings defineddQ̃

dt U
i11/2, j11/2

5 0, Hi 5 0, 1, ..., N 2 1,

j 5 0, 1, ..., N 2 1.
(50)

by (34) become bilinear transformations. The second and
third decompositions are included to study the effect of
curved subdomains. Both perturb Grid I by a sine wave
of amplitude 0.1 into ‘‘bulging’’ (Grid II) and ‘‘wedging’’
(Grid III) decompositions, named so in [38].

Wall conditions, applied as described in the previous4. EXAMPLES
section, are specified on the top and bottom boundaries.
The left boundary is a subsonic inflow boundary. For that,In this section, we use the staggered grid approximation
we specify the exact solution as the incoming conditionto compute three steady flow problems. The first problem
for the Riemann solver. The right boundary is a subsonicis subsonic flow from a point source, which has an exact,
outflow boundary, and again the exact solution is usedanalytic solution. We use this solution to show that expo-
to specify the external flow. A perturbation of the exactnential convergence is obtained. The second problem is a
solution was used as the initial condition.subsonic flow over a circular bump in a channel. Although

Figure 10 shows the computed, steady Mach numberthere is no exact solution for this problem, we show that
contours for Grid I. In that figure, and in those following,the errors due to entropy generated along the curved wall
contour lines are plotted using solution values interpolateddecay exponentially fast. The final problem computes a
from the Gauss points to the Lobatto points using (37).transonic flow in an axisymmetric converging–diverging
The grids in Fig. 9 show those Lobatto points. The solutionsnozzle. That solution is compared to experimental data.
are represented interior to each ‘‘cell’’ bounded by the
grid lines. The interpolation is done for display reasons,

4.1. Subsonic Point Source Flow since a plot using the Gauss points would show gaps be-
tween the subdomains, a result of the fact that the solutionAs our first example, we consider the flow of a steady,

irrotational flow exiting from a point. This flow can be
solved exactly by a hodograph transformation [12]. The
streamlines are radial, and the level curves of the Mach
number, pressure, and density are circles centered on the
source. We will compute this flow in two geometries. The
first represents a flow in an expanding duct, where two
streamlines are chosen as walls of the duct. The second
geometry, a square with five circles cut out of its interior,
is included to show that the method can be used to compute
a flow in a complex, multiply connected geometry.

The first geometry represents steady flow in an ex-
panding two-dimensional duct with straight walls. The
lower wall was chosen to be the line y 5 0 and the upper
wall was the line y 5 x tan(f/6), for x between 1 and 1.5.
The exact solution chosen sets the Mach number at the
lower left corner of the domain to M 5 0.6.

FIG. 10. Mach contours for flow in a diverging duct.We examine solutions for three subdomain decomposi-



256 KOPRIVA AND KOLIAS

FIG. 12. Grid for point source problem.
FIG. 11. Convergence of the error for the three grids of Fig. 9.

grid shown in Fig. 12. The geometry, a square with five
is not defined at the interfaces. Plotting the interpolant circles cut out of its interior, was chosen to show that the
does give some visual indication of the size of the solution method can be used to compute on a complex, multiply
jumps at the interfaces. connected region. Twenty-four subdomains were used to

The staggered grid approximation is exponentially con- cover the computational domain. Up to seven subdomains
vergent for the point source flow in the duct. For Grids share a common corner point without difficulty, because
I–III, Fig. 11 shows the weighted L2 error in the density as such points are not included in the discrete approximation.
a function of the polynomial order used in each subdomain. The boundary conditions were chosen so that the exact
The most marked observation is that for this problem, steady solution was a radial flow with the point source at
which is non-linear, the error and the convergence rate the center of the middle circle of Fig. 12. The center cutout
are not sensitive to the presence of curved interfaces. In circle was specified as an inflow boundary, with the condi-
fact, the convergence rate for the ‘‘bulged’’ decomposition tions chosen so that the Mach number of the incoming
is slightly higher than for the straight-sided subdomains. flow was M 5 0.6. The boundary conditions along the
This contrasts strongly with the observations of [38], which remaining cutout circles were either inflow or outflow,
considered the approximation of second-order linear prob- depending on the direction of the normal velocity. The
lems. There, the presence of even slightly curved interfaces square outer boundary was an outflow boundary. For all
increased the error by orders of magnitude. The reason for inflow/outflow boundaries, the exact solution was used to
the difference is that for the linear problem, the presence of
curved boundaries introduces variable coefficients into the
equation. These variable coefficients are represented as
polynomials of the same degree as the approximation or-
der. The product of the two gives a polynomial order twice
as large, which must be projected back down onto the
original polynomial space. Thus, under a curved mapping,
twice as many collocation points were required to get the
same error as under a linear mapping. For the non-linear
problem, however, the projection of a high order polyno-
mial onto the original polynomial space is required even
if the mapping is linear. This is particularly evident in
the calculation of the pressure, where the ratio of two
polynomials is squared. The additional error introduced
by a curved mapping, then, is masked by the errors intro- FIG. 13. Solution of the point source flow for the geometry shown
duced by approximating the nonlinear terms on the grid. in Fig. 12. The exact solution is plotted with dashed lines, the computed

with solid lines.As our last example of the point source flow, we use the
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stream solution was specified everywhere, and then the
boundary conditions were imposed. This problem does
not have an exact analytic solution. However, since the
incoming flow was chosen to be irrotational and isentropic,
the entropy should be zero everywhere. The fact that this
is not the case can be the result of the spatial approximation
and to the normal wave model used at the interfaces and
boundaries for calculating the flux [34].

Solution contours of the Mach number for the grid
shown in Fig. 15 are presented in Fig. 16. The wall pressure
along the bottom, plotted as the pressure coefficient Cp 5
(p 2 1)/c, is shown in Fig. 17. Finally, a convergence study
of the entropy errors as a function of N is shown in Fig. 18.
In that figure, we plot the maximum value of the quantity
S 5 p/r c 2 1, which should be zero everywhere. We see
that the error due to entropy generation converges expo-
nentially fast.

FIG. 14. Convergence of the density error for the solution shown in
Fig. 13.

4.3. Transonic Flow in a Converging–Diverging Nozzleprovide the external flow values required by the Rie-
mann solver. As an example of a transonic problem, we compute the

In Fig. 13, we plot the exact and computed Mach number flow in an axisymmetric converging–diverging nozzle. We
contours for the solution of the point source flow. For the have chosen the nozzle used in the experimental investiga-
grid shown in Fig. 12, the contour lines of the exact solution, tion of Cuffel et al. [13], which was designed to show sig-
which are plotted with dashed lines, are coincident with nificant two-dimensional effects. The nozzle consists of a
the solid contour lines of the computed solution. converging section with a half angle of 458 and a diverging

The approximation on the grid of Fig. 12 converges section with a half angle of 158. The experimental tests
exponentially. Figure 14 shows the maximum error in the were done in air with a stagnation temperature of 540 R
density as a function of the polynomial order in each subdo- and stagnation pressure of 70 psia. The nozzle geometry
main. We see that doubling the number of points per sub- and the grid that were used in our computations are shown
domain causes the error to decay by approximately two in Fig. 19. Note that we have varied the number of points
orders of magnitude. per subdomain in this problem.

To match the experimental conditions, we scaled Eqs.
4.2. Subsonic Flow over a Circular Bump in a Channel

(31) and (32) by r 5 r*/rtot, p 5 p*/ptot , where the ‘‘*’’
represents the dimensional quantity. Under this scaling,The second example is that of a Mach 0.3 subsonic flow

over a circular bump in a channel. The geometry and grid the temperature and entropy are T 5 T*/Ttot , Stot 5 0.
The initial condition for the computation was the exactwith N 5 9 is shown in Fig. 15. Wall boundaries were

specified at the top and the bottom. At the left and right solution of the quasi-one-dimensional nozzle that has the
same area as the two-dimensional nozzle. For the inflowboundaries, the uniform flow free stream solution was spec-

ified as input to the Riemann solver. Initially, the free condition at the left boundary, we specified that the tangen-

FIG. 15. Geometry and grid for N 5 9 for the flow over a circular bump in a channel.
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FIG. 16. Mach number contours for the flow over a circular bump
in a channel.

tial velocity be zero, the entropy be zero, and the tempera-
ture be unity. At the right boundary, the outflow is super-
sonic, so that no boundary condition is necessary.

Since not all of the external flow values are known at
the left boundary, particularly the inflow velocity, it is not
convenient to use (26) to impose the boundary condition. FIG. 18. Convergence of the entropy generated by the staggered

grid approximation.Instead, we use the following characteristic-like method
that allows us to specify only the parameters that are
known. The fact that the inflow condition sets n 5 0 means

Combining (51) and (52), an equation for the Mach numberthat the flow is essentially one-dimensional. Then we can
at the boundary can be writtenwrite a left-going Riemann invariant for the flow. In terms

of the Mach number, M, and the sound speed, a, that
invariant must satisfy Ïc

Ï1 1 ((c 2 1)/2) M2 SM 2
2

c 2 1D5 R2
computed . (53)

a SM 2
2

c 2 1D5 R2
computed ; acomp. SMcomp. 2

2
c 2 1D ,

Equation (53) can be written as a quadratic equation in
the Mach number and solved directly. Once the inflow(51)
Mach number is known, the sound speed can be computed
using (52). From the Mach number, the sound speed, tan-where the computed quantities represent values interpo-
gential velocity, and the entropy, all the remaining vari-lated to the boundary by the reconstruction procedure.
ables can be computed. From the full state on the bound-The boundary conditions fix the total temperature and the
ary, the boundary flux can be evaluated.entropy. With the scaling given above, this fixes the total

Results computed for the nozzle are shown in Figs. 20–sound speed at atot 5 Ïc. Then the scaled sound speed
23. Contours for the pressure are shown in Fig. 20. Aand the Mach number are related by
comparison of the Mach contours and measured Mach
number in the neighborhood of the nozzle throat is shown

a 5
Ïc

Ï1 1 ((c 2 1)/2) M2
. (52)

FIG. 17. Graph of the wall pressure along the bottom boundary of FIG. 19. Grid for the 458–158 converging–diverging nozzle.
Fig. 16.
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FIG. 22. Comparison of computed and measure wall pressure as a
function of distance from the nozzle throat.

The staggered grid multidomain method for compress-
FIG. 20. Pressure and Mach contours for the nozzle flow. ible flow problems has many desirable features. These fea-

tures include

• Conservation. Mass, momentum, and energy are con-
in Fig. 21. We see good agreement between the computed served globally.
Mach contours and the measured values for Mach numbers

• Free-stream preservation. A uniform, steady flow staysup to about 1.6. We note that the discrepancies between
uniform and steady, even for complex subdomain shapes.the computed and measured Mach numbers are consistent

• Temporal accuracy.with the discrepancies observed with the solutions of the
inviscid flow solvers reported in [13]. Finally, in Figs. 22 • Geometric flexibility. The domain need only be decom-
and 23, we show a comparison between the computed and posable into quadrilaterals.
measured values of the pressure and the Mach number • Programming simplicity. Corners of subdomains are
along the upper wall of the nozzle. not included as part of the approximation. Special cases

do not need to be coded. Subdomains have at most four
5. CONCLUDING REMARKS neighbors in two space dimensions and six in three space

dimensions. Boundary conditions require no special cor-We have presented a new, staggered-grid Chebyshev
ner treatments.spectral multidomain method for the solution of inviscid

compressible flow problems. The solutions are defined at
the nodes of a Gauss quadrature rule, while the fluxes are
evaluated at the nodes of a Gauss–Lobatto rule. We have
applied the method to one- and two-dimensional problems,
but it should extend directly to three dimensions.

FIG. 23. Comparison of computed and measured Mach numbers as
a function of distance from the nozzle throat.FIG. 21. Comparison of computed and measured Mach contours.
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